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FREE VIBRATION AND BUCKLING OF A PARTIALLY
SUBMERGED CLAMPED CYLINDRICAL TANK
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Theoretical analysis and experimental study have been carried out on the free vibration
and buckling under axial compression of a clamped–clamped cylindrical shell which
partially contains liquid and is partially submerged in a liquid. In the analysis, the thin
elastic shell is assumed to be submerged in a rigid cylindrical container with finite diameter.
Considering the effect of the static liquid pressures inside and outside the shell, coupled
bulging-type natural frequencies and critical axial load parameters were calculated for some
system parameters, i.e., the thickness ratio, the aspect ratio, the liquid heights, and
compressive load parameter. The effects of liquid height both outside and inside the shell,
and static compressive load, on the bulging-type natural frequency, were clarified. The
results are summarized in the form of engineering design data from which one can easily
predict the natural frequency and the critical load of a given tank partially submerged in
a liquid and containing a liquid. To confirm the accuracy of the theoretical analysis, an
experimental study was conducted on a test cylinder made of polyester film. On the natural
frequency, excellent agreement between theoretical and experimental results was
demonstrated. Some results were compared with those of a clamped–free shell to see the
influence of the boundary condition.
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1. INTRODUCTION

As one of the fundamental structural components in atomic plant systems and chemical
plants, and so on, liquid containing or liquid faced cylindrical structures have been widely
used. Submerged cylindrical structures have also been used in ocean development plants
to create spaces for living, working, and storage. Hence, it is very important to clarify the
buckling strength under various loads, i.e., compressive, torsional, dynamic and static
loads in order to conduct safety design for earthquakes and wave forces, and to clarify
the vibration characteristics.

The buckling problem for a cylindrical shell has been studied by many researchers, and
the problems for a simple load, i.e. axial compression, external pressure, and torsion has
already been clarified. For problems under combined loads some studies have been
conducted. In 1982, Doki et al. studied the buckling problem of a liquid filled cylindrical
shell under external pressure [1] and compression [2]. They considered the effect of
prebuckling deformation, and clarified the influence of an inner liquid on the buckling.
In 1983, Kodama and Yamaki studied the problem under inner and outer pressures, and
under axial load [3]. In 1989, Chiba et al. treated the buckling problem on a cylindrical
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shell partially submerged in a liquid theoretically and experimentally [4]. They treated both
a clamped–free and a clamped–clamped shell. In 1996, Chiba and Ubukata studied the
influence of an inner liquid on the buckling of a cylindrical shell partially submerged in
a liquid [5].

For the free vibration problem, theoretical and experimental studies have been
conducted on a partially liquid containing shell considering the effect of static liquid
pressure in the analysis by Yamaki et al. for a clamped–clamped case [6] and by Chiba
et al. for a clamped–free case [7–9]. For a shell submerged in a liquid, Chiba conducted
a theoretical analysis and experiment for a clamped–free shell [10] and for a clamped–free
tank partially containing liquid [11].

The aim of the present study is to clarify the free vibration characteristics and the
buckling strength under compressive axial load of a partially liquid containing and
partially submerged cylindrical shell with clamped–clamped boundary condition. This
problem has never been treated before, to the best of the authors’ knowledge. For the
natural frequencies and the buckling loads, the computed results were normalized by those
of the liquidless shell. To see the influence of the boundary condition, the results for
clamped–free shells are also presented. To confirm the validity of the analysis, experimental
studies were also conducted for the natural frequency of a test cylinder made of polyester
film.

2. FORMULATION OF THE PROBLEM

2.1.    

Let us consider the linear free vibration and the stability of a thin perfect cylindrical
shell with radius R, length L and thickness h, which is submerged in a rigid cylindrical
container with radius Ro to a height Ho , and filled with liquid to a height Hi (Figure 1).
The shell is assumed to be isotropic and has a clamped–clamped boundary condition, while
the inner and outer liquids are inviscid, incompressible, and have the same density. The
compressive load P=2pRhsc is applied in the axial direction of the shell. Confining the
problem to relatively low-frequency ranges dominated by flexural motion of the wall, we
will apply the Donnell shell theory. Defining the co-ordinate as shown in Figure 1, the

Figure 1. Liquid contained submerged clamped–clamped cylindrical tank under compression.
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deformation components of the middle plane of the shell are U	 , V	 , W	 in the x, y, z
directions, and the stress resultants N	 x , N	 y , N	 xy, respectively, the governing equations of
the shell are

N	 x,x +N	 xy,y =0, N	 xy ,x +N	 y ,y =0, (1)

D94W	 −
1
R

N	 y −(N	 x W	 ,xx +2N	 xy W	 ,xy +N	 y W	 ,yy )+ rs hW	 , tt +Pi +Po =0, (2)

where

92 =
12

1x2 +
12

1y2, D=
Eh3

12(1− n2)
. (3)

In these equations, E, D and n denote Young’s modulus, flexural rigidity, and Poisson’s
ratio of the shell. Pi and Po are liquid pressures of the inner and the outer liquids.

The shell is subjected to static liquid pressure from both the inner and the outer liquid
in the z direction, and compressive load in the x direction, which produce the axisymmetric
static deformation of the wall. Then, the shell undergoes small amplitude vibration around
the axisymmetric state. The inner and the outer liquid pressures, Pi and Po , are sub-divided
into the static and dynamic components

Pj =Psj +Pdj ( j= i, o). (4)

Assuming the liquid to be irrotational, we can introduce the velocity potential
Fj (x, y, r, t), j= i, o, from which we can obtain the dynamic pressure component as

Psi = rf g(Hi − x)= rf gHi (1− (x/Hi ))ei ,

Pso =−rf g(Ho − x)=−rf gHo (1− (x/Ho ))eo ,

Pdi =−rf [Fi, t ]r=R ei , Pdo = rf [Fo , t ]r=R eo , ej =60 : Hj Q xEL
1 : 0Q xEHj

( j= i, o), (5)

where the subscript j= i, o corresponds to the inner and the outer liquid, respectively.
The relations between the deformations and the stress resultants are

Eh(U	 ,x +1/2 W	 ,2
x )=N	 x − nN	 y ,

Eh0V	 ,y −
W	
R

+
1
2

W	 ,2
y 1=N	 y − nN	 x ,

Eh(U	 ,y +V	 ,x +W	 ,x W	 ,y )=2(1+ n)N	 xy . (6)

Introducing the stress function F	 ,

N	 x =F	 ,yy , N	 y =F	 ,xx , N	 xy =−F	 ,xy , (7)

equation (1) is satisfied. Eliminating U	 and V	 from equation (6), one obtains

94F	 +Eh01
R

W	 ,xx +W	 ,xx W	 ,yy −W	 ,2
xy 1=0. (8)

By using equations (7), (2) and (6),

D94W	 −
1
R

F	 ,xx −F	 ,yy W	 ,xx +2F	 ,xy W	 ,xy −F	 ,xx W	 ,yy + rs hW	 , tt +Pi +Po =0, (9)



.   . 774

Eh(U	 ,x +1/2 W	 ,2
x )=F	 ,yy − nF	 ,xx . (10)

The shell is clamped at the boundaries

x=0, L: W	 =W	 ,x =0,

U	 ,y =V	 ,y =0,

or

F	 ,xxx +(2+ n)F	 ,xyy =F	 ,xx − nF	 ,yy =0, (11)

and the following equations must be satisfied

g
pR

−pR

N	 x dy=−2pRsc h, g
pR

−pR

N	 xy dy=0. (12)

Deformation components and stress resultants can be sub-divided into static and
dynamic ones as,

U	 =U0 +U, V	 =V0 +V, W	 =W0 +W, N	 x =Nx0 +Nx , N	 y =Ny0 +Ny ,

N	 xy =Nxy0 +Nxy , F	 =F0 +F. (13)

2.1.1. Axisymmetric deformation due to static liquid pressure and compressive load
Substituting equation (13) into equations (8)–(12), we obtain

F0,xy =0, V0 =0, (14)

F0,xxxx +
Eh
R

W0,xx =0, (15)

DW0,xxxx −
1
R

F0,xx −F0,yy W0,xx +Psi +Pso =0, (16)

Eh0U0,x +1/2 W 2
0 ,x1=F0,yy − nF0,xx , (17)

−Eh
W0

R
=F0,xx − nF0,yy . (18)

x=0, L: W0 =W0,x =0, (19)

g
pR

−pR

Nx0 dy=−2pRsc h, g
pR

−pR

Nxy0 dy=0. (20)

2.1.2. Small amplitude asymmetric vibration around the axisymmetric state
Furthermore, considering the linear terms of U, V and W, we obtain

94F+Eh01
R

W,xx +W0,xx W,yy 1=0, (21)

D94W−
1
R

F,xx −F,yy W0,xx −F0,yy W,xx −F0,xx W,yy + rs hW, tt +Pdi +Pdo =0, (22)
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Eh(U,x +W0,x W,x )=F,yy − nF,xx ,

Eh0V,y −
W
R1=F,xx − nF,yy ,

Eh(U,y +V,x +W0,x W,y )=−2(1+ n)F,xy . (23)

x=0, L: W=W,x =0,

F,xxx +(2+ n)F,xyy =F,xx − nF,yy =0. (24)

2.1.3. Motions of the liquids
Velocity potential Fj (x, y, r, t), j= i, o, must satisfy the following Laplace equation,

Fj ,rr +
1
r

Fj ,r +
1
r2 Fj ,uu +Fj ,xx =0, j= i, o. (25)

The boundary conditions are as follows:
The velocity at the bottom is zero:

x=0: Fj ,x =0. (26)

Free surface conditions:

x=Hj : Fj , tt + gFj ,x =0. (27)

The velocity matching conditions at the liquid-shell interface:

r=R, 0Q xQHj : Fj ,r =−W, t . (28)

The velocity at the outer rigid wall is zero:

r=Ro : Fo ,r =0. (29)

2.2. -

Here, we introduce the following non-dimensional parameters:

j=
px
L

, h=
y
R

N, b=
LN
pR

, b	 =
b

N
, a=

L2

p2Rh
, t=Vo t, f=

F
Eh3,

p̃o =
L5grf

p4h4E
, kc =

sc hL2

p2D
, (uo , u)=

L
ph2 (Uo , U), (no , n)=

L
ph2 (Vo , V),

(wo , w)= (Wo , W)/h, (li , lo )= (Hi , Ho )/L, g=
12L4rf

p4Rh3rs
,

Vo =
1
RX E

rs (1− n2)
, D=

Eh3

12(1− n2)
, v=

V

Vo
, c=

1
12(1− n2)

,

9�2 =
12

1j2 + b2 12

1h2, f=
F

RhVo
, ḡ=

gp

LV2
o
, g� = ghrs

E
, r=

r
R

,

r̄=
rs

rf
, ro =

Ro

R
, R� =

R
h

, ej =60: plj Q jE p

1: 0Q jE plj j= i, o.
(30)

In these equations, t is time, g is the gravitational acceleration, V is the unknown vibration
frequency, and N is the circumferential wave number of the vibration of the shell. li and
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lo are non-dimensional parameters related to the liquid heights Hi and Ho , respectively.
Here, arranging the system parameters, we have thickness ratio R/h, aspect ratio L/R,
density ratio r̄, radius ratio ro , material parameter g� , compressive load parameter kc and
liquid heights li and lo .

The governing equations and the boundary conditions of the liquid-shell system are
expressed as follows.

2.2.1. Axisymmetric deformation

f0,jjjj + aw0,jj =0, (31)

w0,jjjj −
a

c
f0,jj −

b2

c
f0,hh w0,jj +

p̃o

c $li 01−
j

pli1ei − lo 01−
j

plo1eo %=0, (32)

u0,j +1/2 w 2
0 ,j= b2f0,hh − nf0,jj , (33)

−aw0 = f0,jj − nb2f0,hh . (34)

j=0, p: w0 =w0,j =0, (35)

f0,hh =−
c
b2 kc , f0,jh =0. (36)

2.2.2. Small amplitude asymmetric vibration

9�4f+ aw,jj + b2w0,jj w,hh =0, (37)

9�4w−
a

c
f,jj −

b2

c
f,hh w0,jj −

b2

c
f0,hh w,jj −

b2

c
f0,jj w,hh +12a2w,tt + pdi + pdo =0, (38)

pdi =−gfi ,t =r=1 · ei , pdo = gfo ,t =r=1 · eo , (39)

u,j +w0,j w,j = b2f,hh − nf,jj ,

bn,h − aw= f,jj − nb2f,hh ,

bu,h + n,j + bw0 ,jw,h =−2(1+ n)bf,jh . (40)

j=0, p: w=w,j =0, (41)

f,jjj +(2+ n)b2f,jhh = f,jj − nb2f,hh =0. (42)

2.2.3. Motions of the liquids

fj ,rr +
1
r

fj ,r +0Nr1
2

fj ,hh +01b	 1
2

fj ,jj =0, j= i, o. (43)

j=0: fj ,j =0, (44)

j= plj : fj ,tt + ḡfj ,j =0, (45)

r=1, 0Q jQ plj : fj ,r =−wt , (46)

r= ro : fo ,r =0. (47)
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2.2.4. Axisymmetric vibration
For the axisymmetric free vibration, the governing equation and the boundary

conditions of the shell are:

w,jjjj +
a2

c
w−

b2

c
f0,hh w,jj +12a2w,tt + pdi + pdo =0. (48)

j=0, p: w=w,j =0. (49)

As for the liquid, the governing equation is

fj ,rr +
1
r

fj ,r +01b	 1
2

fj ,jj =0, j= i, o. (50)

and the boundary conditions are given by equations (44–47).

3. METHOD OF SOLUTION

The problem is reduced to an eigenvalue problem to find a coupled natural frequency
as an eigenvalue and to find a critical compressive load in the following manner.

3.1.          

Considering that the compressive load is uniform in the j direction and stress resultants
are uniform in the h direction, we get from equations (31) and (34),

fo, j =−aw0 − nckc , f0,hh =−
c
b2 kc , f0,jh =0, (51)

and

L0 (w0)0w0,jjjj + kc w0,jj +
a2

c
w0 +

p̃o

c $li 01−
j

pli1ei − lo 01−
j

plo1eo %+ nakc =0. (52)

Considering the boundary condition (35), w0 (j) is assumed in the form as

w0 (j)= s
n

an cn (j), n=1, 2, 3, . . . , (53)

where the an are unknown constants and cn (j) are the eigenfunctions of clamped–clamped
beams which are defined as

cn (j)= mn (cosh an j−cos an j)− nn (sinh an j−sin an j), (54)

mn =
(cosh an p−cos an p)

kn
, nn =

(sinh an p+sin an p)
kn

, (55)

kn =zp · sinh an p · sin an p, (56)

where an p are the parameters which satisfy

1−cos an p · cosh an p=0. (57)

Substituting equation (53) into equation (52), and applying the Galerkin method,

g
p

0

L0 (w0) · cl (j) dj=0, l=1, 2, 3, . . . , (58)
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from which one can obtain a coupled linear equation in terms of an .

s
n

anG
G

G

K

k

kc

a4
n − a4

l
(Anl −Aln ):

kc al {ql (al ql p
2 −1)− nl ml}−0a4

l +
a2

c 1:
n$ l

n= l
G
G

G

L

l

=
p̃o

ca4
l p

{c0l (pli )−c0l (plo )+2a3
l nl (pli − plo )}+

nakc

a4
l

{c0l (p)+2a3
l nl}, (59)

where

Anl =4a2
n a3

l (ql + nl mn ), qn =
1
p

(cot an p+coth an p). (60)

3.2.       

3.2.1. Stress function
Next, small amplitude asymmetric vibration around the axisymmetric deformed state,

with circumferential wave number N(q1) is considered. We assume shell deflection w and
the corresponding stress function f in the form

w(j, h, t)= eivt cos h s
m

bm cm (j), (61)

f(j, h, t)= a eivt cos h f�(j), (62)

Figure 2. Natural frequency of liquidless cylinder: Z=50.
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where the bm are unknown parameters. Substituting equations (61) and (62) into equation
(37) and integrating, we obtain the general solution of f� as:

f�(j)=C1 cosh bj+C2 sinh bj+C3 bj · cosh bj+C4 bj · sinh bj

−s
m

bm

(a4
m − b4)2 [2b2a4

m cm (j)+ (a4
m + b4)c0m (j)]

+
b2

a
s
n

s
m

s
e

an bm dnme

(a4
e − b4)2 [(a4

e + b4)ce (j)+2b2c0e (j)], (63)

dnme =g
p

0

c0n (j) · cm (j) · ce (j) dj. (64)

The unknown constants C1 to C4 can be determined with the boundary conditions (42) and
(43).

So far, we have obtained expressions for w and f satisfying both the compatibility and
the boundary conditions exactly.

Figure 3. (a) Minimum natural frequency v0e , vme , and (b) corresponding wave number parameter bme . ——,
N$ 0; -----, N=0.
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3.2.2. Velocity potential
We assume the velocity potential fj , satisfying the governing equation (43) and the

boundary condition (44), as

fj (r, j, h, t)= iv eivt$sk Ajk u jNk + s
l

(Bjl z jNl +Cjl x jNl )+Dj r
N +E

1
rN% cos h (65)

u jNk (r, j)=GjNk (e jNk r) cosh (e jNk b	 j), (66)

zjNl (r, j)= IN 0lr
b	 lj1 cos 0l

lj
j1, (67)

x jNl (r, j)=KN 0lr
b	 lj1 cos 0l

lj
j1 (68)

Figure 4. (a) Comparison of the minimum natural frequency, and (b) wave number parameter of
clamped–clamped and clamped–free shell. ——, N$0; -----, N=0.
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for the outer liquid ( j= o),

GjNk (ejNk r)=YN (ejNk r)−
YN,r (ejNk )
JN,r (ejNk )

JN (ejNk r), j=O (69)

for the outer liquid with j= o, and

GjNk (ejNk r)= JN (ejNk r), j= i (70)

for the inner liquid with j= i, where Ajk , Bjl , Cjl , Dj , and E are unknown parameters,
and JN , YN , IN and KN are the Bessel function of the first kind, Bessel function of the
second kind, the modified Bessel function of the first, and the modified Bessel function of
the second kind of order N, respectively. Furthermore, ejNk are the equation,

1GjNk (ejNk )
1r br=1ro

=0, (71)

for the outer liquid ( j= o), and

1JN (ejNk r)
1r br=1

=0, (72)

for the inner liquid ( j= i).
Hereafter, similar steps are employed as in reference 11. Using the boundary conditions

Figure 5. Natural frequency variation with compressive load: Z=50, m=1, without liquid. ——, kc=0;
——, kc=10·0; ------, kc =20·0; ––––, kc=30·0; –·–·–, kc =31·5.
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(46), and applying the Galerkin method, one can get the free-surface condition (45) in
terms of Aik , Aok , and bm in a matrix form as:

[(Qi 0)−v2(I Si )]6Aik

bm7= {0},

[(Qo 0)−v2(I So )]6Aok

bm 7= {0}. (73)

Expressions Qi , Qo , Si and So are presented in reference 11.

3.2.3. Galerkin method
Now, we shall seek values of bm for the approximate satisfaction of the remaining

governing equation (38). We apply the Galerkin method from which one can get a coupled
equation in terms of Aik , Aok , and bm as:

[(0 0 E)−v2(Gi Go F)]8Aik

Aok

bm 9= {0}. (74)

where E and F are the 1×m matrices while Gi and Go are the 1×1 matrices. Actual
expressions for the elements of these matrices are given in reference 11. Combining
equations (73) and (74), we get

&2Qi

0
0

0
Qo

0

0
0
E3−v22 I

0
Gi

0
I
Go

Si

So

F3'8Aik

Aok

bm 9= {0}. (75)

This is a coupled homogeneous linear equation in terms of Aik , Aok and bm , from which
one can obtain natural frequencies of the system as eigenvalues, and critical compressive
load parameters which corresponds to zero natural frequency.

Figure 6. Axial compressive buckling load parameter kc0 and wave number bc0 of liquidless shell [12].
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3.2.4. Axisymmetric vibration
In this case, the solution for w and fj are assumed as

w(j, t)= eivt s
m

bm cm (j), (76)

Figure 7. Minimum natural frequencies with outer liquid height lo : L/R=0·5, R/h=50, ro =4·0, r̄=8·0,
g� =1·0×10−10, m=1; (a) li =0; (b) li =0·5; (c) li =1·0. ——, C–C; -----, C–F.
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fj (r, j, t)= iv eivt$sk Ajk ujok + s
l

(Bjl zjol +Cjl xjol )+D(r2 +2b	 2j2)+E log r%, (77)

ujok (r, j)=Gjok (ejok r) cosh (ejok b	 j), (78)

xjol (r, j)=Ko 0lr
b	 lj1 cos 0l

lj
j1, (79)

zjol (r, j)= Io 0lr
b	 lj1 cos 0l

lj
j1, (80)

Gjok (ejok r)=−Jo (ejok r)+
J1 (ejok )
Y1 (ejok )

Yo (ejok r), (81)

1Gjok (ejok )
1r br=1ro

=0, (82)

for the outer liquid with j= o, and

fj (r, j, t)= iv eivt$sk Ajk ujok + s
l

Bjl zjlo +Bo (r2 −2b	 2j2)%, (83)

u jok (r, j)= Jo (e jok r) cosh (e jok b	 j), (84)

zjol (r, z)= Io 0lr
b	 lj1 cos 0l

lj
j1, (85)

1Jo (e jok r)
1r b r=1

=0 (86)

for the inner liquid with j= i.

4. NUMERICAL RESULTS

Vibration characteristics and buckling strengths of the present liquid-shell coupled
system are governed by the following system parameters: the thickness ratio R/h, the aspect
ratio L/R, the density ratio r̄, the radius ratio ro , the material parameter g� , and the liquid
heights li , lo . Among these parameters, we will be mainly concerned here with R/h, L/R
and li , lo , to clarify the influence of the liquids, inside and outside the shell, on the natural
frequency and the buckling strength of the cylindrical shell system. For the engineering
data from which one can presume the free vibration characteristics and buckling loads of
a liquid-filled submerged shell, it would be convenient if the calculated results were
normalized by those of the shell when the liquid heights are zero, i.e., without inner and
outer liquids, as it had been done for the submerged cantilever cylinder [11].

In the calculations, unknown terms in equations (53), (61) and (65) were taken as n=20,
m=10 and k= l=8 to get reliable values as engineering data.
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4.1.      

Natural frequency variations of a liquidless clamped cylinder with circumferential wave
number N are presented in Figure 2, as one example for Z0L2z1− n2/Rh=50 shell.
From the figure, one finds that the minimum values for each axial vibration wave number

Figure 8. Minimum natural frequencies with outer liquid height lo : L/R=0·5, R/h=500, ro =4·0, r̄=8·0,
g� =1·0×10−10, m=1; (a) li =0; (b) li =0·5; (c) li =1·0. ——, C–C; -----, C–F.
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m correspond to that with N1 10. We hereafter consider those minimum natural
frequencies with m=10 3 modes.

For a wide range of the geometrical parameter Z, minimum natural frequency v0e , vme

and corresponding wave number parameter bme (=LN/pR) has been obtained by Yamaki
et al. [9] as shown in Figure 3. Present results without liquid agree with their results. From

Figure 9. Minimum natural frequencies with outer liquid height lo : L/R=2·0, R/h=500, ro =4·0, r̄=8·0,
g� =1·0×10−10, m=1; (a) li =0; (b) li =0·5; (c) li =1·0. ——, C–C; -----, C–F.
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Figure 3, the minimum vibration mode is found to correspond to axisymmetric (N=0)
mode in a small range of Z.

To see the influence of the boundary condition of the upper end of the shell, comparisons
with the results for a cantilever cylinder, i.e., clamped–free (C–F) are shown in Figure 4,

Figure 10. Effect of density ratio r̄: L/R=2·0, R/h=100, ro =4·0, g� =1·0×10−10, li =0, m=1; (a) r̄=1·5;
(b) r̄=3·0; (c) r̄=8·0. ——, C–C; -----, C–F.
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when m=1. Restricting the motion of the upper end of the shell, the natural frequencies
of a clamped–clamped shell are higher than those of a cantilever shell.

Hereafter, concerned with the natural frequency of the liquid-coupled shell, the
normalized natural frequency of that of a liquidless shell, v/vme will be used.

4.2.     

Next, as an example of the influence of the axial compressive load on the natural
frequency of the shell, natural frequency ratios v/vme are shown in Figure 5 for the Z=50
shell, when the axial compressive load parameter kc =0, 10, 20, 30, 31·5. Natural
frequency decreases with kc , and it becomes zero which corresponds to the buckling. In
this case, the critical value kc0 =31·7. For the liquidless shell, critical compressive load
parameter kc0 and corresponding wave number parameter have been calculated by Yamaki
and Kodama [12], as shown in Figure 6. The present results agree with theirs. Concerned
with the compressive load parameter of the liquid-coupled shell, we will use the normalized
compressive load parameter of that of the liquidless shell, k�c = kc /kc0.

4.3.       

Here, we consider the influence of the system parameters, i.e., R/h, L/R, r̄, g� , ro , kc ,
li and lo , on the minimum natural frequency ratio v̄/vme . In the figures presented hereafter,
as is mentioned above, the results for the C–F shell are also presented to see the difference
of the boundary condition.

4.3.1. Influence of thickness ratio R/h and aspect ratio L/R
In Figure 7, frequency variations with the outer liquid height lo are presented when the

inner liquid height li =0: (a), li =0·5: (b), li =1·0: (c), with L/R=0·5, R/h=50, ro =4·0,
r̄=8·0, g� =1·0×10−10 and m=1. In this case, the shell is relatively thick and short.

From Figure 7(a), when the inner liquid height li =0, the natural frequency decreases
with the outer liquid height lo . Reductions of the natural frequency are influenced more
by lo in the C–C case than in the C–F case. By filling liquid inside the shell, i.e., Figure 7(b)
and (c), the values v̄/vme at lo =0 are smaller than those of the li =0 case, and the
reductions of the natural frequency with lo become small. When the shell becomes thinner,
as shown in Figure 8, as R/h=500, and taller as L/R=2·0 in Figure 9, the reduction of
the natural frequency with lo becomes large and the influence of the boundary condition

Figure 11. Minimum natural frequency with material parameter g� : ro =4·0, r̄=8·0, li =0, lo =1·0, m=1.
——, C–C; -----, C–F.
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is significant when the inner liquid is partially filled, i.e., li =0·5, and it becomes small for
the full filled case where li =1·0.

4.3.2. Influence of density ratio r̄

Influences of the density ratio r̄ on the frequency variation with lo are shown in
Figure 10, where r̄=1·5, 3·0 and 8·0 which correspond to the polyester/water,
aluminum/water, steel/water cases. The reduction of the natural frequency becomes
significant for smaller values of r̄.

Figure 12. Influence of compressive load k�c : L/R=2·0, R/h=500, ro =4·0, r̄=8·0, g� =1·0×10−10, li =0;
(a) m=1; (b) m=2; (c) m=3. ——, k�c=0; -----, k�c =0·25; – – – –, k�c=0·50; –·–·–·, k�c=0·75.
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4.3.3. Influence of material parameter g�
Next, the influence of material parameter g� is considered. As can be expected from the

definition of g� = ghrs /E, when g� becomes large, i.e., E becomes small and by keeping the
others constant, the effect of static pressures both outside and inside the shell becomes
relatively significant. In Figure 11, the variations of the fundamental natural frequency
with g� are shown for L/R=0·5, R/h=50 and L/R=2·0, R/h=500.

The natural frequency is found to gradually decrease with an increase in g� , and suddenly
drops at a value of g� which corresponds to the buckling of the shell under an external liquid

Figure 13. Influence of compressive load k�c : L/R=2·0, R/h=500, ro =4·0, r̄=8·0, g� =1·0×10−10, li =1·0;
(a) m=1; (b) m=2; (c) m=3. ——, k�c=0; ----, k�c =0·25; – – – –, k�c =0·50; –·–·–, k�c=0·75.
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pressure. The degree of the frequency reduction is significant for a longer and thinner
shell. Critical value of g� at which buckling occurs is larger in the C–C case than in the
C–F case.

4.3.4. Influence of axial compressive load parameter k�c

In Figure 5, the influence of axial compressive load parameter on the natural frequency
variation when li =0 has been presented. Next the case when the liquid is inside the shell
is considered. The results when k�c =0, 0·25, 0·5, 0·75 are shown in Figure 12 when li =0,
and in Figure 13 when li =1·0. Over the whole liquid range, lo , the natural frequency is
reduced by the axial compressive load.

4.4.  

Some examples for the vibration mode which correspond to the minimum natural
frequency are shown in Figure 14, when li =0·5 and changing lo =0, 0·5, 1·0 for

Figure 14. Vibration mode: L/R=2·0, R/h=100, ro =4·0, r̄=8·0, g� =1·0×10−10, li =0·5; (a) lo =0;
(b) lo =0·5; (c) lo =1·0.
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Figure 15. Influence of inner liquid height on buckling load k�c : ro =4·0, g� =1·0×10−10, li =1·0, lo =0. ——,
r̄=8·0; – – – –, r̄=1·5.

m=1, 2, 3. From the figure, the amplitude of the wall which does not face the liquid is
found to be larger than that facing the liquid, for the mode with m=2, 3.

4.5.    

Next, the influences of the inner and the outer liquids on the compressive buckling load
ratio parameter k�c is studied.

First, the influence of the inner liquid is considered. Figure 15 represents k�c values with
Z, when the inner liquid is fully filled and the outer liquid is absent. Inner liquid produces
an outward hoop stress in the shell wall which strengthens the thin shell structure against
the axial compressive load when compared with that of the liquidless shell. From the figure,
the effect of the inner liquid is found to be significant for the shell with larger Z, i.e., for
a longer and thinner shell, in which k�c is greater than unity.

Next, the influence of the outer liquid is considered. In this case, contrary to the inner
liquid, the outer liquid produces an inward compressive hoop stress in the shell wall which

Figure 16. Influence of outer liquid height on buckling load k�c : ro =4·0, g� =1·0×10−10, li =0, lo =1·0. ——,
r̄=8·0; ------, r̄=3·0; – – – –, r̄=1·5.
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Figure 17. Influence of inner liquid height on buckling load k�c : ro =4·0, r̄=1·5, g� =1·0×10−10, lo =1·0,
——, li=0·75; -----, li =0·50; – – – –, li =0·25; –·–·–, li=0.

weakens the shell structure against the axial compressive load. k�c values are presented in
Figure 16 with Z when lo =1·0, li =0 and changing r̄=8·0, 3·0, 1·5. By submerging, the
compressive axial strength of the shell is found to be reduced. The influence of such outer
liquid pressure is significant for the shell with large Z.

Finally, as some examples of the combined effect of the inner and the outer liquids, k�c

are shown in Figure 17 when r̄=1·5, lo =1·0 and changing the inner liquid height as
li =0, 0·25, 0·5, 0·75. By filling the inner liquid, buckling ratio k�c gradually increases in the
range with larger values of Z. Figure 18 shows the results of the shell with Z=4500. When
the liquid is partially filled inside the shell (li =0·5), the degree of reduction in k�c with lo
becomes small, and when the liquid is fully filled in the shell (li =1·0), buckling strength
becomes larger than the empty case as k�c q 1, in the whole range of lo .

Figure 18. Influence of inner and outer liquids on buckling load k�c : Z=4500, ro =4·0, r̄=1·5,
g� =1·0×10−10, ——, li=1·0; -----, li =0·5; – – – –, li =0.
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5. COMPARISON WITH EXPERIMENTAL RESULTS

Finally, to confirm the validity of the theoretical analysis, experiments were conducted
for the natural frequency of uncompressed shells by using a test cylinder made of polyester
film with the geometrical parameter Z=L2z1− n2/Rh=502. Water was used as the
liquid. The radius R=100 mm, the thickness h=0·244 mm, the length L=113·1 mm,
and the radius of the outer cylinder Ro =195 mm. Detailed physical properties of the
polyester film are shown in reference 11, Table I and details about the test equipment are
also presented in reference 11.

Figure 19. Comparison of natural frequency between numerical results and experiment, Z=502, lo =0·5;
——, theory (C–C); -----, theory (C–F); w, experiment (C–C); (a) li=0·25; (b) li =0·5; (c) li =0·75.
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In the experiment, the outer liquid height lo was taken as 0·5, and the inner liquid height
li was changed in 0·25 steps. The results are shown in Figure 19. In the figure, calculated
results for the lower three axial vibration modes are shown with solid lines, while the
experimental results are shown with circles. For reference, the theoretical results for
the C–F shell are presented with dashed lines. One can see very good agreement between
the theoretical results and experimental ones, which indicates the validity of the analysis.

6. CONCLUSION

A theoretical analysis has been carried out on the linear free vibration and the buckling
under compression of a partially liquid containing thin clamped cylindrical shell that is
also partially submerged in a liquid. In the analysis, the effect of the static liquid pressures
on both the inside and outside surfaces of the shell was taken into account. The main
results obtained from the present study are summarized as follows:

Natural frequency: (i) In general, the natural frequency of the shell decreases with the
outer liquid height lo or with the inner liquid height li. The degree of the reduction is
significant for a thinner and longer shell. (ii) In the natural frequency variations with outer
liquid height lo , those of the C–C shell are influenced more by the outer liquid than those
of the C–F shell, when the inner liquid is absent. (iii) For lower inner/outer liquid height,
i.e., the partially filled/submerged case, the influence of outer/inner liquid height, lo /li , on
the natural frequency is large, while for higher inner/outer liquid height, the influence of
outer/inner liquid height is small. In other words, when the shell is nearly fully
filled/submerged, the reduction of the natural frequency with outer/inner liquid height,
lo /li , is very small. These come from the added mass effect. (iv) The experimental results
are in good agreement with the theoretical results, which indicates the validity of the
theoretical analysis.

Buckling strength: (v) By submerging, the axial strength of the shell decreases. The
degree of strength reduction is significant for a shell with larger values of Z. (vi) The liquid
inside the shell strengthens the shell under axial load. The effect is pronounced in a shell
with large Z.
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APPENDIX: LIST OF SYMBOLS

c parameter defined in equation (30)
dnme parameter defined by equation (64)
D flexural rigidity of shell
E Young’s modulus
F( f ) stress function (non-dimensional form)
g(ḡ) gravitational acceleration
g� material parameter
Hi (li =Hi /L) inner liquid height
Ho (lo =Ho /L) outer liquid height
h shell thickness
kc axial compressive load parameter
k�c load ratio parameter
L(=L/R) length of shell (aspect ratio)
m axial mode number of vibration
N(b) circumferential wave number
Pdo (pdo ) dynamic liquid pressure
R(R/h) mean radius of shell
Ro radius of outer shell
t(t) time
W(w) vibration amplitude of the shell
Wo (wo ) static deflection of the shell
x(j), y(h), z, r(r) co-ordinate system
n Poisson’s ratio
rs , rf mass density of shell and liquid
r̄ mass density ratio, =rs /rf

ro radius ratio, =Ro /R
F(f) velocity potential
cn (j) eigenfunction of beam defined by equation (54)
V(v) circular frequency
vme asymmetric minimum natural frequency of liquidless shell
voe axisymmetric natural frequency of liquidless shell
v̄ minimum natural frequency


